

INSTITUCIÓN EDUCATIVA SANTA ELENA

Nit: 811.017.836-7 Dane 20500101103101 Aprobado por Resolución No. 0715/2004

GESTIÓN ACADÉMICA Y PEDAGÓGICA PLAN DE APOYO ANUAL

Código: Versión:01 Página 1 de 6

Docente: Liliana Patricia Santofimio Barrera		Área / Asignatura:	Grado: 11°1-
		Química	11°2
Periodos	Fecha: 22 de octubre de	Nombre Estudiante	
1, 2 y 3	2018		

Indicadores de Desempeños a superar

- Describe y expresa a través de ecuaciones, reacciones químicas que ocurren su medio.
- Establece de manera experimental las cantidades de reactivos o productos implicados en una reacción química
- Realiza cálculos relacionados con las unidades físicas y químicas de la concentración de una solución.
- Realiza conversiones gramo-mol-átomo.
- Identificación de los componentes de una solución.
- Realización de cálculos relacionados con las unidades físicas y químicas de la concentración de una solución.
- Enumeración de los factores que afectan la solubilidad de una sustancia
- Resolución de ejercicios estequiométricos cuando las sustancias se presentan en solución.

Criterios de Evaluación

Presentación del taller: 30% Sustentación escrita u oral: 70%

Actividades a realizar

Dey Estador Paricus Program

INSTITUCIÓN EDUCATIVA SANTA ELENA

Nit: 811.017.836-7 Dane 20500101103101 Aprobado por Resolución No. 0715/2004

GESTIÓN ACADÉMICA Y PEDAGÓGICA PLAN DE APOYO ANUAL

Código: Versión:01 Página 2 de 6

- .¿Cuántas moles de de hierro existe en 25 g de hierro puro (Fe)?
- **2.** En el laboratorio un estudiante deberá manipular 5 g de magnesio (Mg) durante un experimento de oxidación. ¿A qué cantidad de átomos de magnesio corresponde?
- 3. ¿Qué masa en gramos presentará un átomo de carbono?
- 4. ¿Cuál es la masa de 3.01 x10²³ átomos de sodio (Na)?
- 5. ¿Cuántos átomos de oxigeno (O) hay contenidos en 1 mol de moléculas?
- **6.** La glucosa (C₆H₁₂O₆) es la principal fuente de energía para el metabolismo celular. Se obtiene fundamentalmente a través de la alimentación, y se almacena principalmente en el hígado. Calcula el numero de átomos de carbono (C) que hay en 0,35 mol de C₆H₁₂O₆
- 7. ¿Cuántos átomos de oxígeno hay en:
- **a.** 0,25 mol de Ca(NO₃)₂ **b.** 1,50 moles de Na₂CO₃
- 8. Determina la masa molar de los siguientes compuestos:
- a. H₂S
- **b.** Al_2O_3
- c. Na₂SO₄
- **d.** $Ca(ClO_4)_2$
- **9.** El hidróxido de sodio (NaOH) es una sustancia que muchas amas de casa adquieren en ferreterías como soda caustica y se utiliza para destapar cañerías. Si una señora compra 1 kg de dicha sustancia,
- a. ¿Cuántos moles de hidróxido de sodio adquirió?
- b. ¿Cuántas moléculas de hidróxido hay en un 1 kg?
- **10.** El agua es fundamental para la vida. Todo medico que visites te recomendara consumir a los menos 2 litros de agua diarios. Si logras tomar esa cantidad de agua: (*La densidad del agua* es 1 *g/mL*).
- a. ¿Qué masa de agua tomas?
- b. ¿Cuántos moles de agua bebes al día?
- c. ¿Cuántas moléculas de agua beberás al final del día? ¿Cuáles son las fórmulas empíricas de los compuestos que tienen las siguientes composiciones porcentuales?
 - A. 2.1 % de H, 65.3% de O, 32.6% de S
 - B. 20.2 de Al, 79.8 de Cl
 - C. 40.1% de C, 6.6% de H 53.3 % de O
 - D. 18.4% de C, 21.5 % de N, 60.1% de K
 - 12.EL platino forma dos compuestos diferentes con el cloro. Uno contiene 26.7% de Cl y el otro tiene 42.1% de cloro. Determine las fórmulas empíricas de los dos compuestos.

Der Ender Program

INSTITUCIÓN EDUCATIVA SANTA ELENA

Nit: 811.017.836-7 Dane 20500101103101 Aprobado por Resolución No. 0715/2004 Código: Versión:01 Página 3 de 6

GESTIÓN ACADÉMICA Y PEDAGÓGICA PLAN DE APOYO ANUAL

- 13. El peroxiacilnitrato (PAN) es uno de los componentes del smog. Es un compuesto de C, H, N y O .Determine la composición porcentual del Oxígeno y la fórmula empírica a partir de los siguientes porcentajes en masa: 19.8% de C, 2.5 % de H y 11.6% de N.
- 14. Determinar la fórmula mínima o empírica de una sustancia constituída por 28,1% de S; 56,1 % de O; 12,3 % de N y el resto H. Luego calcule La fórmula molecular sabiendo que la masa molar es de 228 g/mol.

Balaceo de ecuaciones y tipos de ecuaciones

- 1. Balancear las siguientes ecuaciones por el método de tanteo:
- (a) Al + O₂ \longrightarrow Al₂O₃ (b) $N_2 + O_2 \longrightarrow N_2O$ (c) $K + KNO_3 \longrightarrow K_2O + N_2$ (d) Mg + $O_2 \longrightarrow MgO$ (e) $H_2SO_4 + NH_3$ (NH₄)₂ SO_4 (f) $P_4 + O_2 \longrightarrow P_4O_6$ (g) $P_4 + O_2 \longrightarrow P_4O_{10}$ (h) $KCIO_3 + H_2SO_4 \longrightarrow HCIO_3 + K_2SO_4$ (i) KOH + CO₂ \longrightarrow K₂CO₃ + H₂O (j) KOH + CO₂ \longrightarrow KHCO₃ **---**(k) KClO₃ KCI O_2 (I) $H_2O_2 \longrightarrow H_2O + O_2$ (m) HCl + CaCO₃ → $CaCl_2 + H_2O + CO_2$ (n) NO + O_2 → NO₂ (o) NH₃ + HCl → NH₄Cl (p) HgO \longrightarrow Hg + O₂ (q) $Zn + HCI \longrightarrow ZnCl_2 + H_2$ (r) CuO + $H_2 \longrightarrow Cu + H_2O$ (s) CuCl₂ + Na₂S CuS + NaCl
 - 2. Clasifique las siguientes reacciones en reacciones de síntesis, descomposición, simple sustitución y doble sustitución.

OPP Ender Program

INSTITUCIÓN EDUCATIVA SANTA ELENA

Nit: 811.017.836-7 Dane 20500101103101 Aprobado por Resolución No. 0715/2004

Código: Versión:01 Página 4 de 6

GESTIÓN ACADÉMICA Y PEDAGÓGICA PLAN DE APOYO ANUAL

5. Considere la combustión del monóxido de carbono (CO) en oxígeno gaseoso:

$$2CO + O_2 \longrightarrow CO_2$$

Si la reacción se inicia con 3.60 moles de CO, calcule el número de moles de CO₂ producto. En una reacción si hay suficiente oxígeno para reaccionar con el O₂.

6. El tetracloruro de silicio (SiCl₄) se puede preparar por calentamiento de Silicio en Cloro gaseoso:

$$Si + Cl_2 \longrightarrow SiCl_4$$

En una reacción se producen 0.507 moles de SiCl₄, ¿Cuántas moles de Cloro (Cl₂) molecular se usaron en la reacción?

7. ¿Cuántas moles de cloruro de cromo (III) se requieren para producir 75 g de cloruro de plata? La ecuación que explica la reacción es:

$$CrCl_{3 (ac)} + AgNO_{3 (ac)} \longrightarrow Cr(NO_3)_{3 (ac)} + AgCl_{(ac)}$$

8. Un producto secundario de la reacción que infla las bolsas de aire para automóvil es sodio, que es muy reactivo y puede encenderse en el aire. El sodio que se produce durante el proceso de inflado reacciona con otro compuesto que se agrega al

Dey Endon Profes Pregrat

INSTITUCIÓN EDUCATIVA SANTA ELENA

Nit: 811.017.836-7 Dane 20500101103101 Aprobado por Resolución No. 0715/2004 Código: Versión:01 Página 5 de 6

GESTIÓN ACADÉMICA Y PEDAGÓGICA PLAN DE APOYO ANUAL

contenido de la bolsa, el nitrato de potasio (KNO₃), según la reacción:

$$Na_{(s)} + KNO_{3(ac)} \longrightarrow K_2O_{(s)} + Na_2O_{(s)} + N_2_{(g)}$$

¿Cuántos moles de K2O se producen cuando reaccionan 5.56g de Na?

9. El octano (C₈H₁₈) se quema de acuerdo con la siguiente ecuación:

$$C_8H_{18}(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$$

¿Cuántas moles de CO₂ se producen cuando se queman 8 g de C₈H₁₈?

10. Qué masa de magnesio se necesita para que reaccione con 9,27 g de nitrógeno? La ecuación que explica el proceso es:

$$Mg(s) + N_2(g) \longrightarrow Mg_3N_2$$
.

- 11. El proceso Haber para producción de amoniaco se representa mediante la siguiente ecuación balanceada:
- a) A partir de 100 g de N₂ y 100 g H₂. ¿Cuántos g de NH₃ (amoniaco) se obtienen?
- b) ¿Cuál el reactivo limitante y cuál el reactivo en exceso?
- c) Calcule la cantidad de g de reactivo en exceso que quedan al final de la reacción.
 - 12.La siguiente ecuación balanceada muestra la preparación de Al₂O₃ (óxido de aluminio) calentando 225 g de óxido de cromo II con 125 g de aluminio.

$$2 \text{ Al}_{(s)} + 3 \text{ CrO}_{(s)} \longrightarrow \text{Al}_2\text{O}_{3(s)} + 3 \text{ Cr}_{(s)}$$

- a) ¿Cuántos gramos de óxido de aluminio se forman?
- b) ¿Quién es el reactivo limitante?
- c) ¿Cuántos gramos de reactivo en exceso quedan después de la reacción?
 - 13.De acuerdo a la siguiente ecuación:

$$C_{(s)} + SO_{2(g)} \longrightarrow CS_{2(s)} + CO_{2(g)}$$

- a) ¿Cuántas moles de CO₂ (bióxido de carbono) se obtienen a partir de 15 mol de carbono y 95 mol de SO₂ (dióxido de azufre)?
- b) ¿Cuál es el reactivo limitante?
- c) ¿Cuántas moles de reactivo en exceso quedan al finalizar la reacción?
 - 14. La siguiente ecuación representa la segunda etapa del Proceso Ostwald para producir ácido nítrico.

$$NO_{2(g)} + H_2O_{(\ell)} \longrightarrow HNO_{3(ac)} + NO_{(g)}$$

- a) ¿Cuál es el reactivo limitante?
- b) ¿Cuántos gramos de agua son necesarios para producir 250 g de HNO3 (ácido nítrico)?
- c) Si se mezclan 25g NO₂ y 50 g de agua, ¿cuántos gramos de

HNO3 se obtienen?

D) Cuál es el Reactivo en exceso y cuánto en gramos queda después de la reacción?

Dey Educion Program

INSTITUCIÓN EDUCATIVA SANTA ELENA

Nit: 811.017.836-7 Dane 20500101103101 Aprobado por Resolución No. 0715/2004 Código: Versión:01 Página 6 de 6

GESTIÓN ACADÉMICA Y PEDAGÓGICA PLAN DE APOYO ANUAL

1. Concentraciones porcentuales

- 1. Determina el % m/m de una solución preparada al mezclar 30 g de agua con 50 g de leche.
- 2. Calcula el % V/V de una solución de 400 mL que contiene 50 mL de un soluto X.
- 3. Establece el % m/V de una solución acuosa de 200 mL que presenta 30 g de cloruro de sodio
- 4. Cuál es la cantidad de agua necesaria para preparar un jugo de concentración de 5% m/m si el sobre contiene 30 g?
- 5. Cuántos gramos de azúcar se deben disolver en 20 mL de agua para obtener un almíbar de concentración 10% V/V?

1. Molaridad

- 1-Se prepararon 150 ml de solución conteniendo 15 g de Na₂CO₃, ¿qué concentración molar tiene dicha solución?
- 2.-En 500 ml de solución hay 35 g de NaCl, Calcular la concentración molar de la solución.
- 3.- Calcular la concentración molar que tiene una solución sabiendo que en 35 ml de ella hay 0.3 g de (NH₄)₃PO₄
- 4.-¿Cuál será la molaridad de una solución que contiene 2.5 moles de K I en 5 litros de solución?
- 5.-¿Cuántos gramos de sulfato cúprico, CuSO₄, se requieren para preparar 200 ml de solución al 2.5 molar?
- 6.- ¿Qué cantidad de carbonato de potasio, K₂CO₃, se necesita para preparar 400 ml de una solución 2 M?
- 7.- ¿Cuántos gramos de dicromato de litio, Li₂Cr₂O₇, se deben disolver en agua destilada para preparar 600 ml de solución 1 M?
- 8. Como prepararías una disolución acuosa 5 molar, si un mol de sustancia tiene una masa de 52 gramos?
- 9- ¿Cuántos gramos de glucosa, C₆H₁₂O₆, hay en 2 litros de solución 0.4 molar?